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ABSTRACT

The pumping power and ef{iciency of a jet pump can be
substantially increased by introducing a rotating primary
flow. The rotating primary causes an energy transfer from
the primary fluid to the secondary fluid through a pressure
force. Non-rotating jet pumps transfer energy through vis-
cous friction. The reversible nature of the work accom-
plished through a pressure exchange is inherently more effi-
cient then the nonreversible work accomplished through
viscous interaction. This study focuses on the interaction

zone of the inducer and specifically on an experimental

comparison of viscous and pressure energy exchange.
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NOMENCLATURE

Primary symbols only are listed.

are defined in the text.

- area

d - diameter

m o 3

- friction factor

- acceleration due to gravity
- total head

head loss

- constant

- length

z &R > M
'

- momentum

rate of contraction

=
'

- pressure

volume flow ratio

[=2V & B o
l

- velocity

static head

[}
)

Greek Symbols

a - area ratio

velocity flow

Y - specific weight
n - efficiency
8 - semicone angle

10
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Intermediate quantities

g - characteristic ratio of a variable cross-section
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P - density

- Subscripts

| D - diffuser
, ip - jet pump
Ji mc - mixing or interaction chamber
%i T - ratio
ﬁ{ P - primary
1 s - secondary

DT R e e
x
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I. INTRODUCTION

Jet pumps, ejectors, and eductors are members of a generic
family of devices that exchange energy directly between a
driving and driven fluid. No intervening mechanical systen,
suchas a turbine or compressor, is required in the energy
exchange.

The eductor uses a driving fluid that interacts or entrains
a secondary fluid. The ejector uses a driving fluid to remove
a secondary fluid from an enclosure. A common type, the air
ejector, is used to remove air and noncondensible gases from
a condenser. Another in the family, the injector, uses pri-
mary fluid to increase the head of a secondary fluid as in a
feed water injector for a boiler. The water jet heat exchanger
uses the primary fluid tc increase or decrease the temperature
of the secondary fluid as in adding heat to feed water or
desuperheating steam.

Jet pumps generally consist of the following components:

1. a nozzle to introduce the high velocity primary jet,

2. a suction box or inlet section to introduce the secon-
dary fluid,

3. a throat or fluid interaction zone where the primary
and secondary flows exchange energy,

4, and a diffuser to recover the kinetic energy of the

combined fluids as pressure energy.

13
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The primary and secondary fluids of a jet pump can be
either liquid or gas and a jet pump can be classified gas-gas,
liquid-gas, gas-liquid, or liquid-liquid where the first term
in each case is the driving fluid. Jet pumps may also be
classified according to fluid phase and components. A main
condenser air ejector for example, is a one phase-two component
jet pump (air and steam being components), while a boiler
steam-jet water injector is a two phase-one component jet pump

(water and steam are two phases of the same fluid).

14
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II. BACKGROUND

A. HISTORY
The first jet pump was used by J. Thompson in 1852 [Ref. 1].

The theory of jet pumps was advance by J. M. Ranine in 1870

. {Ref. 2]. Early Jet pumps required large primary flows or

' pressures to produce a desired total flow. They therefore,
had low efficiencies for transfering the energy of the primary
fluid to the energy of the secondary fluid, hence, little
interest existed for their development and use. In the 1930's
Gasline and O'Brien predicted theoretical efficiencies of

forty-one percent at a mass flow ratio (total mass flow to

primary mass flow) of 1.2 [Ref. 3]). In the early 1940's, the
United States Department of the Interior employed jet pumps
with efficiencies on the order of 31 percent and flow ratios
above 2.0 [Ref. 4].

In recent years jet pumps have received increased atten-

tion in applications as deep well pumping and booster pumping
in the o0il and energy industries, as jet pump propulsors in
high performance ships, as thrust augmentors in V/STOL air-
craft, and in dust collectors, exhausters, and waste gas dis-
posal units in the environmental protection and pollution

control industry.
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B. THEORY OF WATER JET PUMPS

Although a water et pump is physically a simple apparatus,
the principles involved in its operation are complex and span
the entire range c{ fluid dynamics. Some of the processes
involved in the operation of a jet pump are [Ref. 5}:

1. Conversion of pressure energy to kinetic energy in the
primary jet nozzle, resulting in a high velocity low pressure
jet.

2. Induction of a secondary flow into the interaction
zone by a pressure reduction at the primary nozzle exit.

3. Transfer of energy from the primary fluid to the
secondary fluid. This occurs through an impulse of a primary
fluid particle on a secondary fluid particle. On a macroscopic
scale, this could be seen as entrainment of the secondary fluid
through viscous transfer or energy transfer through a pressure
force.

4. Conversion of kinetic energy to pressure energy of
the combined primary and secondary fluids in the diffuser.

Each of the above processes is dependent on all the others.
Therefore, to understanu the operation of the jet pump as a
whole, it is necessar:' to understand each of the separate
procasses .nvolved and how they interact with the others.

The mixing zone of a jet pump is most often studied using
applications of momentum and energy conservation at points

before the streams converge and after mixing is complete

17
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[Ref., 6]. The process taking place between these points is
complex.

It is the purpose of this effort to study the interaction
zone of the jet pump and to investigate the proces:ses involved
in this zone. The paper will also attempt to demonstrate what
phenomena taking place in the interaction zone can be used to
best advantage, to increase the total outlet flow with respect
to a given primary flow input energy.

Of particular interest is the special flow interaction
phenomenon known as ''crypto-steady' energy exchange. While

mechanical alterations of a system using crypto-steady flows

are not significant, the fluid dynamics are profoundly altered.

The interaction in a steady flow jet pump is caused by viscous
forces, while in a crypto-steady jet pump the secondary flow
acceleration is accomplished directly by pressure forces at

the primary-secondary interface.

C. A SIMPLE JET PUMP

The simplest case of a jet pump will consist of a cylin-
drical tube drawing on a secondary incompressible fluid at
atmospheric pressure at one end and discharging to the atmos-
phere at the other end. There is no inlet chamber and no
diffuser. A primary jet nozzle located concentrically in the
center of the tube will introduce the incompressible primary
fluid (Figure 2), [Refs. 6, 7]. The following relationships
for thic¢ cimple jet pump are valid:

18
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1. Bernoulli's equation for incnmpressible fluids will
hold from point 1 to cross section AA.

2. The continuity ecuation will apply for the total flow
between cross section AA, where the primary jet begins inter-
acting with secondary flow, to cross section BB, where the
interaction is considered complete. The following equation
pertains:

.'USdAs * fUpdA = (AS + AP)U (1)

P

where As - area of secondary flow channel at cross section
AA,
US - velocity of secondary jet
Up - velocity of primary jet
Ap - area of primary jet at cross section AA,
U - velocity of mixed fluids at cross section BB,
A - tota! ‘a2 of cylinder,
AP+A5.

3. The momentum equation will apply to the same bounda-
ries:
2 p 2 P
P+ (Plodldag + 1yt + (Podlda,
- 2
(Ag * AP)U (2)
4. For the primary fluid from primary pressure to cross

section AA, (Bernoulli's equation),
YU 2

'yt T

20
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where Pp - the total pressure of the primary fluid

p - static pressure at cross section AA

AA
g - acceleration due

to gravity.

The outlet velocity and thus volume flow rate can be shown

to be related to the primary velocity and the ratio of primary

area, A, to the total cross sectional area of the interaction

cylinder, ([Ref. 6],

o =

P S

(4)

expresses the area ratio, the outlet velocity can be expressed

by
U = Up[- a(l-20) + (2

-6l v ) (s)

Similary the outlet volume flow rate is expressed by

Q
Q= L[-3(-2) + (2
since the primary volume flow

= U A
QP PP

Appendix A is a complete deriv

D. THEORETICAL JET PUMP EFFIC

As stated earlier, the jet

1
- 6ad + 4a") /2] (6)

rate is

(7

ation of equations (5) and (6).

IENCES

pump works on the principle of

a primary jet entraining and driving a secondary fluid. This

pumping action is due to the exchange of momentum between the

primary and secondary fluids.
as useable work obtained from
the system. The useable work

depend on its purpose. Where

21

Efficiency is most often defined
the system per energy input into
obtained from the jet pump would

the purpose is to move a
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secondary fluid, the useable work obtained would be equal to
the energy imparted to that fluid. Where the purpose is to
produce a thrust, the useable work obtained would be equal to
the energy of the total mass at the outlet of the ejector.
The energy supplied to the system would always be obtained
from the primary fluid. The maximum ideal pumping efficiency
can be shown using the former definition:

rate of work in moving secondary fluid
energy suppllied by primary tluid

The momentum of the secondary fluid leaving the pump jet
is
M =pA ULU (8)
where oAsUS = st is the mass rate of flow of the secondary
fluid, and U is the discharge velocity. The rate of work in

moving the secondary fluid is

- 2
(e QUIU = oAU U (9)
The kinetic energy supplied by the primary jet is
U 2
= AU 1
KE = oAU 5~ (10)
where pApUp = pr is the mass flow rate of the pirmary fluid.

The ideal pumping efficiency as per the preceeding defini-

tion is
2 2
pAsUsU ZQSU

n,. = - (11)
ip U2 QU7
PP
pAsUp-g»

where AU = Q, the volume flow rate.

22
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An interesting evaluation of the maximum ideal efficiency

of a jet pump was proposed by Reddy and Kar [Ref.

5]. They

determined that the maximum ideal efficiency would be fifty

percent where volume flow rate of the primary fluid equaled

the volume flow rate of the secondary fluid. Appendix B is

a complete derivation of Reddy and Kar's proposal showing its

limitations.

E. LOSSES

!
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Although the ideal efficiency was shown to be S0 percent
at flow rations of 1.0 and only decreasing slightly for values

of QS/Q between 0.75 and 1.5, actual efficiencies obtained in

practice are significantly lower. In 1965, a maximum effi-

ciency of 16.1 percent for a flow ratio of 4.0 was obtained

on a two stage jet pump by Hoshiet. al. [Ref. 8].

Somewhat

earlier Mueller obtained an optimum efficiency for a water

jet pump of 37 percent for a flow ratio of 1.5 [Ref. 9].

Some of the reduction in efficiency can be attributed to

losses in individual components of the jet pump.

lossas are usually defined in terms of head loss, therefore,

Component

it will be necessary to define jet pump efficiency in terms

of pumping head.

For the purpose of discussing component losses, total jet

pump efficiency will be defined as:
Q (H-H,)

" Qp (M

23
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where

H -

volume flow rate of the secondary fluid
volume flow rate of the primary tluid
total head of the secondary fluid

total head of the primary fluid

total head of the delivered fluid.

Equation (12) is similar to that defined by equation (11)

in that it compares energy added to the secondary fluid to

total energy added to the system by the primary fluid. Eva-

luation of the fluids total head in equation (12) can be

accomplished analytically by representing the total head by

the sum of the fluids static head and kinetic energy. Head

losses can be determined by the difference in total heads at

any two points in the fluids stream.

An empirical evaluation of individual components losses

may be found in Appendix C.
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ITI. HYPOTHESIS

A, IMPROVEMENTS IN ENERGY EXCHANGE

Momentum exchange between a primary flow and a secondary
flow can be accomplished by two methods; viscous entrainment
and pressure exchange. Viscous entrainment is an irreversible
and dissipative process. It requires a large mixing chamber,
is slow and ‘s relatively inefficient. Friction losses is
the mixing  amber further contribute to total system losses,
and are directly proportional to the length of the mixing
chamber, as seen in equation (32). Thus, if the length of the
mixing chamber can be reduced, the efficiency of the ,et pump
is expected to improve. Size reduction of the overall system
is also attractive in certainvolume and weight sensitive
applications such as aircraft.

In order to reduce the size of the interaction chamber,
the energy exchange rate of the primary and secondary fluids
must be increased. This can be accomplished by increasing
the primary-secondary interaction area and/or increasing the
rate of spreading of the primary jet. Figures 4 through 8
all depict techniques used in the past to perturb the primary
flow in order to increase the interaction rate.

A potentially more efficient method of primary-secondary

energy exchange can be accomplished through the work of pres-

sure forces at the primary-secondary fluid interface.
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i Essentially reversible, the work of interface pressure forces
is of necessity nonsteady because no work can be done by pres-
sure forces acting on a stationary interface. Figure 9 depicts
a steady flow ejector and the pulsating or pulse tube ejector.

Pulse tube ejectors have been previously investigated as

L thrust augmentors where the primary flow acts as a piston and
energy is transferred to the secondary fluid at the pressure
interface. The pulsating flow arrangement offers size as well

as performance advantages as shown by Lockwood (Ref. 11].

s e

AR R v
J . STEADY-=-FLOW —— Ay TN e —--——\_—A—“\:'———v—-s::
EJECTOR

PULBATING =
FLOW QJECTOR

cyl/l/t\\\\b

/z"_l’@—

STEADY FLOW AND PULSATING FLOW EJECTORS SHOWING
COMPARATIVE LENGTHS

FIGURE 9:
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B. CRYPTO-STEADY FLOW

In most applications, both the primary and secondary
streams are steady. Thus, in order to generate a primary
stream to take advantage of a nonsteady primary to secondary
energy exchange, the steady primary flow wculd have to be
severely perturbed. A problem is thus generated in that
"chopping up" or interrupting the primary fluid introduces
losses which, in all likelihood, would exceed any possible
gains produced by an improved primary to secondary energy
exchange. One proposed resolution of this problem is the use
of a "crypto-steady' pressure exchange as desbribed by Foa
{Ref, 12]:

Crypto-steady pressure exchange is a mode of direct
energy transfer between flows, based on the principle
that two adjacent streams which are both isoenergetic
in the same frame of reference will, in general, exchange
mechanical energy in any other frame. The efficiency of
this process is potentially high, because a change of
frame of reference is reversible, and the associated
transfer of energy is therefore nondissipative.

An application of this principle to thrust or lift
generation is discussed for the purpose of illustration.
In this application the interacting flows are steady and
isoenergetic in a rotating frame of reference but exchange
energy in a stationary frame. The exchange mechanism is
essentially similar to that of a turbofan, but the 'blades'
are now patterns rather than bodies of abiding material.

The advantage of using crypto-steady flows in a jet pump,
is that the primary flow can be generated, controlled and
studied as a steady flow in the rotating frame of reference,
and used to exchange energy in the stationary frame of re-

ference in which the jet pump exists.

30
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This can be accomplished physically by developing a primary
nozzle in which the primary flow leaves with some spin or
blade angle. The primary nozzle is allowed to spin freely as
a result of the thrust reaction created by the primary flow f
(much like a lawn sprinkler). It is important to point out
that although the primary flow describes a helix much like that
from a propeller the motion of an individual particle of the

primary flow is essentially axial. ‘

There are several thought process that can be followed in 1
order to explain the mechanism involved in this mode of energy #
exchange.

One is based on the fact that the rotating nozzle is con- f
tinually moving the primary jet through the secondary flow i
field. Therefore, as the primary jet leaves the primary nozzle, !

it is constantly being introduced to low energy secondary fluid.

This produces a higher velocity gradient between the primary
and secondary fluids then with a non-rotating nozzle, where
only the secondary fluid adjacent to the first short distance
of the surface of the stationary primary jet see the full pri-

mary-secondary velocity difference., The higher velocity gra-

1 o w0 RN~ e Do

dient between the primary and secondary fluids, in turn,

produces a higher shear rate and thus increases the viscous

interaction.

A different reasoning approach suggests that the improved
energy transfer of the rotating primary nozzle system lies in

another macroscopicly conceptualized phenomenon.

31

i




Mar g T Rt Y

The rotating nozzle physically distributes the energy of
the primary fluid throughout the secondary flow cross section.
This process might best be described if a stream tube with
infinitely thin walls is imagined in the interaction zone.

Its centerline is parallel to the centerline of the rotating
nozzle. A high energy pulse of primary fluid will enter the
stream tube each time a nozzle passes its entrance. This
primary fluid element will have slower moving secondary flow
immediately ahead of it. The primary and secondary fluid
elements will then exchange energy across their interface;

the primary slowing while the secoudary accelerates. Behind
the primary element secondary fluid is drawn into the pseudo-
stream tube. As the next primary nozzles crosses the stream
tube another primary pulse will enter. Enerzy will be exchanged
between the primary and secondary fluids at their interface
much as energy is exchanged between the primary and secondary
fluids in a pulse jet. This energy exchange through a pressure
force is essentially reversible and thus should increase the
efficiency of the system.

Undoubtedly, neither of the above descriptions is complete
in explaining the phenomenon involved. 1In all likelihood,
there appears to be only a subtle difference between a relatively
random particle momentum exchange in the viscous interaction

concept and a more ordered energy exchange in the crypto-steady

or pseudo-blade system.
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An experiment was developed to study the interaction zone
of the jet pump. The primary purpose of the experiment was to
compare the effects of rotating and nonrotating primary jet
streams on the fluid interactions. In addition, the effects
of changing primary energy and nozzle rotational speed are

also investigated.

C. THE EXPERIMENTAL APPARATUS

To study the effect of improved energy transfer in the jet
pump, many cf the components of the pump not directly related
to mixing, including the secondary inlet nozzle and outlet
diffuser, have been eliminated. The experimental apparatus
consists of a primary tube to inject the primary flow, various
interchangable nozzles to explore steady and crypto-steady
primary flow effects, and the interaction chamber. The secon-
dary nozzle and outlet diffuser have been eliminated as not
pertinent to this study. The dimensions of the mixing chamber,
secondary suction box, and flow outlet were kept constant to
eliminate unnecessary variables. The primary tube was extended
throughout the mixing chamber to keep the cross section of the
mixing chamber constant and to improve the observation of the

phenomenon taking place.

o The secondary flow suction and total flow discharge were
; maintained in the same horizontal plane and discharged water
X into the same tank to ensure constant and equal static heads
at those points. The total mass flow was measured by an elbow
flow meter just prior to discharge.
33
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The primary flow was introduced about midway through the
mixing chamber. Mass flow was measured by a strain gage flow
meter and pressure was measured by both a bourdon tube pressure
gage and a strain gage pressure transducer. Figure 11 is a
schematic of the experimental apparatus. Figure 12, is a
photograph of the actual experimental system.

Three primary nozzles were employed in the experiement.

A coning angle of five degrees was used on all primary nozzles.
The coning angle is that angle at which the primary fluid is
injected into the secondary with respect to the axis of secon-
dary flow. 1In cylindrical coordinates the coning angle is
represented by ¢, the angle measured down from the centerline
of the secondary flow (x-axis) to the line representing the
primary flow.

Blade angles of zero, twenty, and thirty-five degrees were
used on the different primary nozzles. The blade angle is also
measured with respect to the centerline of the secondary flow
(x-axis), however, it is cffset from that axis by the radius
of the primary nozzle and is perpendicular to that radius. It
is the blade angle that causes the primary flow to induce
torque to the primary nozzle. Figure 13 describes the blade
angle.

The primary fluid enters the interaction zone through four
1/8 inch diameter holes in the primary nozzles. Secondary flow
suction and total flow discharge were each accomplished through

two inch inside diameter PVC pipe. The interaction chamber

35
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FIGURE 12:

THE EXPERIMENTAL APPARATUS
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FIGURE 13: SCHEMATIC OF ROTATING PRIMARY NOZZLE
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was manufactured from two inch inside diameter plexiglass pipe

and the primary supply pipe extending through the interaction

chamber was of one inch outside diamter aluminum pipe. A con-
stant head in the supply/discharge tank was maintained at ten
inches of water from the centerline of the secondary suction/
total discharge lines by means of a stand-pipe in the constant
head tank.

The secondary flow suction box was located immediately
upstream of the primary nozzle. It was twenty inches in length
and of the same cross-sectional dimensions as the interaction

chamber to provide for a reasonably steady secondary flow prior

to interaction. The interaction chamber was also twenty inches
long to allow for a complete primary to secondary energy trans-
fer. Twenty-eight inches of PVC pipe was installed prior to
the elbow flow meter to allow for a steady flow through that
device.

A dye injection system was incorporated into the primary
supply line to identify the primary and secondary fluids in

the interaction chamber.
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IV. OBSERVATIONS

A. EXPERIMENTAL RESULTS

Several experimental runs were made with each of the pri-
mary nozzles. Primary mass flow, primary pressure and total
mass flow, were measured for each of the nozzles at various
primary supply pressures.

The ratio of total mass flow to primary mass flow is used
as an indicator of performance of each of the three nozzles
for comparison purposes. The mass flow ratio was plotted as

a function of primary pressure for each of the nozzles, (Fi-

gure 15). There is almost no effect of primary pressure on
the mass flow ratio of the zero degree blade angle nozzle.

The slight drop as primary pressure incrases can be attributed
to increased nozzle losses at higher flow velocities at the
higher primary pressures. For both the twenty and thirty-five

degree blade angle the mass flow ratio increased dramatically

with increased primary pressure. In addition, the mass flow
ratio increases with increasing blade angle when the same
primary pressure was applied to each nozzle.

The mass flow ratios for the zero degree blade angle nozzle,

operating only on a viscous interaction basis between the pri-

mary and secondary fluids, ranged from 3.88 to 3.59, decreasing
as primary fluid pressure (and thus velocity) increased. The i

mass flow ratios cf the twenty degree blade angle primary f




nozzle ranged from 4.06 to 4.70 increasing as prima:y pressure
(and thus nozzle rotational speed) increased. The mass flow

ratios for the thirty-five degree blade angle spinner ranged

from 4.30 to 5.44 again increasing as primary pressure increased.

The interaction efficiency of each configuration of the

é experimental jet pump is calculated using equation (23). In-

J : s . . |
T, teraction efficiency versus blade angle is plotted for various

s primary pressures in Figure 16.

The improvements in efficiency are also dramatic; from
1.62 to 2.12 percent for various pressures in the zero degree

blade angle nozzle, 2.43 to 3.98 percent for the twenty degree

T

blade angle nozzle, and 2.98 to 6.42 percent for the thirty-

five degree angle nozzle. Although these numbers may appear
small, the relative improvement in efficiency, especially at
: ' the higher primary pressures is impressive. By introducing a
pressure force energy exchange between the primary and secon-
dary fluids, the improvement in interaction efficiency was

more than tripled at primary pressures over twenty pounds per

s

square inch.
It appears that the increased flow ratio at constant
primary pressure and with increasing nozzle blade angles is

caused by the introduction of a pressure force interaction

between the primary and secondary fluids. The basis for this
assumption is the increased efficiency observed as the blade
angle increases. Since the zero degree nozzle has no spin,

the primary fluid merges with the secondary fluid in parallel
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and continuous streams. All primary particles follow the same
stream line. The method of energy exchange between the primary
and secondary fluids is by viscous entrainment only. Spin is
imparted to the twenty and thirty-five degree nozzles by the
reaction as a result of the tangential momentum component of
the primary flow. Although the individual particles of fluid
have pathlines parallel to the secondary axis, each consecutive
primary particle from one revolution of the primary nozzle has
its own streamline. The streamlines are repeated every revo-
lution of the primary nozzle, but the particles are delayed

by the period of the nozzle. By isolating one streamline, one
would see a series of primary pulses separated by secondary
flow. If the operation of the jet pump could be frozen in time,
the flow field would have the appearance illustrated in Figure
10. The primary fluid would form a helix with all particles

of the primary fluid moving parallel to the secondary axis.
Secondary fluid is trapped within this helix and is ''pushed"
along by a pressure exchange. It is this introduction of an
energy exchange process through the action of pressure forces
that has produced the increase in mass flow ratio. As the
helix gets tighter, as from the twenty to thirty-five degree
nozzles, the angular speed of the nozzle increases and the
number of pressure impulses from the primary increase. It is
expected, however, that there is an optimum blade angle for

in the limit where the blade angle approaches ninety degrees

the primary motion would be purely radial, therefore, there
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could be no axial component of the primary jet and, hence no
energy exchange in the axial direction.

Attempts were made to visualize the primary-secondary in-
terface in the interaction zone by dying the primary fluid.
In this way the primary fluid could be distinguished from the
secondary fluid after it entered the interaction chamber. By
careful observation the primary fluid could be identified for
approximately twelve primary nozzle diameters down the inter-
action chamber from the non-rotating primary nozzle, although
it was spreading rapidly. In either of the rotating primary
nozzles the colored primary fluid quickly disappeared in a
cloud of dye shortly (two to three primary nozzle diameters)
after leaving the primary nozzle, indicating an increased rate
of interaction.

Appendix D is a list of raw data.

B. LOSSES IN THE ROTATING PRIMARY NOZZLE

Energy Josses in the spinning nozzle can have serious
detrimental effe~ts on the operation of a crypto-steady jet
pump. If friction inhibits the rotation of the primary nozzle,
the flow of the primary fluid after it leaves the nozzle will
not be parallel to the secondary flow axis. A 'frictionless'
speed of rotation was calculated by sciving for the component
of the mass rate of flow perpendicular to the nozzle axis and
assuming all bearings and surfaces were frictionless. If the
primary fluids velocity were truly axial the tangential speed

of the nozzle should be equal and opposite to the component of
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flow perpendicular to the nozzle axis. As the rotation of
the nozzle slow from its calculated frictionless speed to no
rotation, the primary to secondary energy exchange difference
diminishes to zero. It was observed that for the maximum
primary flow of the thirty-five degree nozzle (6.1 GPM), the
frictionless speed of rotation would be 5413 RPM. The spin
of the primary nozzle was measured at 605 RMP. A friction-
less twenty degree nozzle would spin at 3330 RPM for a pri-
mary flow of 6.5 GPM. In the actual case, the speed of the
primary nozzle was measured at 250 RPM.

As friction slow the primary nozzle down, the individual
particles of primary flow enters the secondary at an angle
to the flow. The streamlines formed by the primary takes
the shape of a heli. and the distance between primary
impulses increases. It will be, therefore, necessary to
devote thought to reducing friction in the spinning primary
nozzle to as small a value as possible.

Another major energy loss from the primary fluid occurs
during the transition from the stationary primary supply
line to the rotating nozzle. Whereas the primary nozzle in
a stationary jet pump can be designed to make losses almost

negligable, the losses in the rotating nozzle can be high.
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V. CONCLUSIONS AND RECOMMENDATIONS

The mass flow ratio nad the efficiency of a jet pump can
be substantially increased by introducing a rotating flow.
It appears that the rotating primary causes an energy exchange
from the primary fluid to the secondary fluid through an
interface pressure force. Non-rotating jet pumps transfer
energy through viscous interaction. The reversible nature
of work accomplished through a pressure exchange is inherently
more efficient then the nonreversible work accomplished
through viscous interaction.

It was experimentally demonstrated that the ratio of

total discharged mass flow to primary inlet mass flow can be

greatly increased through the use of a rotating primary nozzle.

The efficiency of the fluid interaction with a rotating
primary nozzle was increased over the efficiency of the
viscous fluid interaction.

It is expected that the efficiency of fluid interaction
in a rotating primary jet pump can be further improved if:

1. design of the rotating nozzle is improved to reduce
losses in the primary nozzle to a minimum;

2. establish an optimum area ratio, for best interaction
efficiency;

3. establish an optimum blade and coning angle for

maximum interaction efficiency; and,
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4. introduce a secondary nozzle to establish an optimum
secondaty to primary mass flow ratio for maximum efficiency.
{ Finally, future work will require investigation of the
% intricacies of the interaction zone. This could be accom-

" plished by inserting a ram pressure probe, hot wire anomo-

meter or a laser doppler anonometer into the primary stream

TR .

at various points within the iteraction zone to determine
how and where the primary fluid interacts with the secondary

fluid.
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APPENDIX A

DERIVATION OF VELOCITY AND VOLUME
FLOW RATIO EGUATIONS

The following derivation for Equations (5) and (6) is
taken from Von Karman [Ref. 6]. In these equation U denotes
the axial component of the velocity of the primary flow.

The secondary flow well upstream of cross section AA is at
rest and at atmospheric pressure. All pressures are relative
to atmospheric pressure. Finally, U, the outlet velocity

is assumed to he distributed over cross section BB. Since
cthe velocity distribution is uniform Equations (1) and (2)
can be written:

ASUs + ApUp = (As + AP)U (13)

AUt + Paasg) ¢ A (Ut e FAa/,) = g ¢ AU (14)

PAAg PAA Usz

Since = .- o7 according to Bernoulli's equa-

tion, Equation (14) becomes:
U ? u.?
A-5—+ AU?2 - A.3-= (A_+ A U2 (15a)
s 7T PP P ¢ P 3
or (A, - A )VUz + AU?= (A + A U2 (15b)
s pZ " pp P s

Soalving Equation (13) for U, and substituting into Equation
(15b) gives
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- A .U - AU -,
Pl PPy« AU 2= (A + A)U2 16
- )P AT e (A A (16)

A - A A
3 ny (.5
(S—B)

Equation (16) can then be solved quadratically for the out-
let velocity as

U = Up[- a(l-2a) + (20 - 6a? + 4a“)1/2] (S)

where a 1s the ratjo of the primary jet area to the total

flow area,
a = —P— (4)

In many pump jet applications the primary jet area is

small in comparison to the total flow area, thus

U= Up ( -« + /o ] (17)

is an adequate approximation of the outlet velocity for
small area ratios.

The discharge volume flow rate, Q, can be found where

Qp - UpAp (18)

and

Q= U(As + Ap) (19)

Substituting into Equation (5) gives

Q- Sg [-a(l-2a) + (2a-6a® + 4a')1/2] (6)

as a result, By eliminating higher order terms for smail

area ratios
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Q
qQ = ER[ -a + /I ) (20)

will provide satisfactory results.

™

Figures 17 and 18 are plots of the discharge velocity/ ’
primary jet velocity ratio and discharge flow rate/primary

mass flow rate ratio versus the jet area/total area ratio.
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As can be seen from Figure 17, the approximate solution can
only be justified for values of x less than 0.2. 1In jet
pump applications where a is greater than 0.2, the exact
solution, although algebraicly involved, will have to be

employed.
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APPENDIX B

DERIVATION OF MAXIMUM IDEAL JET PUMP EFFICIENCY

An interesting evaluation of the maximum efficiency of

jet pump was proposed by Reddy and Kar [Ref. 5] using the

continuity and momentum equations. Of the several assumptions

he makes including constant and equal fluid densities and
negligible losses in the throat/mising section of the jet
pump, by far the weakest is neglecting the secondary fluid's
momentum.

The evaluation follows. With the assumption of a negli-
gible secondary momentum, the momentum equation through the
jet pump is:

OQPUp =oQU (20)

substituting the continuity equation,
pQ = pQ, *rQ (21)

into Equation (24) and factoring out the density produces

QU, = (@ * Q,)U (22)

solving for the flow ratio
Q u_-u

- 2 (23)
% v

substituting Equation (23) into Bquation (11)
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2(U_-U)U
n, = —2 (24)
1P up2

dn,
The jet pump efficiency will be maximum when —aﬁp = 0:

dn, U_-47)
JE - pz = 0 (25)
du U
P
or
Up = 2U (26)

The maximum efficiency will therefore be

- 2(2U-U)U 2u?

. = = .5 (27)
P (2U)? ay?
and the flow ratio
Q
s o 2U-U _
Q-; R ikl (28)

The ideal interaction efficiency as a function of flow
ratio is plotted in Figure 3.

When using the above derivation care must be taken to
ensure the assumption of negligible secondary momentum is
valid. Using the continuity equation and solving for QS/Qp

in terms of area ratio, a, and velocity ratio, U/Up, produces

Q, Q- AU 1 .U
2 ltRyrcler (@ - (29)
% % 8; PP o 'O,

wnen from Equation (27), U/Up = (0.5
o (30)
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The jet pump efficiency then is

Q. uy .2 _1-2

om 2( P el 31

"ip (Q—)(U~) e (31)
P P

For the relationship to have reasonable meaning a must lie

between 1/6 (njp = 1) and 1/2 (njp = 0). In addition the

secondary to primary velocity ratios can be found using the

equation
U A
_-"..82_2 -92(1.“__) (32)
U QA Q
P P s p

If, according to Equation (28), Q/Q equals one, the area
ratio, a, must be small to ensure the assumption that the

secondary flow momentum is correct.
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APPENDIX C

COMPONENT LOSSES

The following derivation of jet pump was adapted from
Reddy [Ref. 13] and Reddy and Kar [Ref. S]. Loss equations
for the primary nozzle, secondary nozzle and outlet diffuser

were emperically developed by Reddy [Ref., 13].

A. PRIMARY LOSSES
The primary flow line consists of a straight pipe leading
from a pressure source to a primary outlet nozzle. The
Darcy-Weisback equation is used to express friction losses
in this line.
h = f L 95%— (33)
where h; -head loss
f -friction factor
L, -length of pipe
D, -inside diameter of pipe
U, -primary flow velocity in pipe
g ~-acceleration due to gravity.
Using the continuity equation to express Equation (33)

in terms of the outlet primary velocity
2

A U
s RGRY 2 (34)

58




M> ™
o
£ 4 0o

_ S
”.
i
!
3

IO SRS EE s R e LA e gtk w06

——

JET PUMP INDICATING LOSSES

FIGURE 19:

59




i
!
A
é
”
%

PRESSURE
GAGK

FIGURE 20: PRIMARY LINE

tme
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The head loss in the driving nozzle is expressed by
U 2

£ 1
he = §cot o (1—5;,) 25- (35)

where np - rate of contraction of area in primary

ep - semicone angle of the primary nozzle

B. SECONDARY FLOW LOSSES

An equation similar to Equation (35) is used to express
the head loss through the secondary nozzle, the flow converges
annularly and the expression for the head losses through the

secondary nozzle becomes:
£ 1 £ 1 s
hy = [§ cot ep(1-ﬁ;?) + g cot 65(1-527)]25— (36)
where n, - rate of contraction of area in the secondary
nozzle

es - semicone angle of the secondary nozzle.

If the velocity ratio is defined as

U
8] - ._§. (37)
T v
P
Equation (36) can be defined in terms of the primary velocity
£ 1 1,..%"
2 - - a——
hs{g U *lcot o (1 E;T) + cot 8 (1 n,z)]}“gi (38)

Bendes in the primary and/or secondary lines, penetrations
for sensors and other flow disruptions will also cause lossess
for which must be accounted. Theoretical expressions for

these losses can bte found in Reference [10].




C. INTERACTION CHAMBER LOSSES

Losses in the interaction chamber are difficult to eva-

(S PP Sy ﬁﬂmrs’-‘:ﬁi‘M
= i

luate. Different approaches should be used depending on the

-

length of the chamber. The optimum length of the interaction
chamber is defined as that length where the primary fluid

has completed its energy transfer to the secondary fluid.

Cidhde, S 4t iR peasolll

- Beyond that length the Darcy-Weisback equation should be

f used to account for friction losses. Up to the optimum length
the Darcy-Weisback equation for friction losses in a pipe
should be modified. The secondary fluid will enter the zone
of interaction along the outer walls at extremely small
velocities. As the energy exchange progresses, the secondary
fluid velocity will increase to its maximum at the optimum
mixing chamber length., Friction losses in the mixing chamber

: | up to the optimum chamber length were evaluated by Reddy
(Ref. 5] using the Darcy-Weisback equation and the average

secondary velocity in the mixing chamber.
| 1 S
L (%) “
- s mc 7
Pac * T a7 (39)

where me -mixing chambexr length

dmc -mixing chamber diameter
u -valocity of the combined primary and secondary
fluids at the discharge of the mixing chamber.
Using the continuity equation (Eq. 3) and the area ratio a

(Eq. 4).

i
3
'
i
b
é
2
i
;

Ys

y
- ®a g (1-a) (40)
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substituting Equation (40Q) into Equation (39) produces the

friction head loss for the mixing chamber.
L U_2
- mc - 2
e ™ f (20 V(01T g (s1)

D. DIFFUSER LOSSES

Kinetic energy of the combined primary and secondary
fluid is converted tc pressure energy in the diffuser. Dif-
fuser lossers fall into two categories: losses due to fric-
tion and losses due to diffusion of the fluid. Using the
continuity, energy, and momentum equations, diffuser head

losses were determined by Reddy [Ref. 5] to be

- £ 1 nD-l_ . 1 u?
hp = I COtSD(l'nD2) + (nD+1)51n29D(1-35;)]25 (42)
substituting Equation (40) into Equation (42)
h, ={fcote (1--1y) + (nD.l)sinze (1-=12) 1 [a+U (1+a)]2:L2
D 3° D n, nD*I b nD2 T g

(43)
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